Extensions 1→N→G→Q→1 with N=C22 and Q=C2xDic6

Direct product G=NxQ with N=C22 and Q=C2xDic6
dρLabelID
C23xDic6192C2^3xDic6192,1510

Semidirect products G=N:Q with N=C22 and Q=C2xDic6
extensionφ:Q→Aut NdρLabelID
C22:(C2xDic6) = C2xA4:Q8φ: C2xDic6/C2xC4S3 ⊆ Aut C2248C2^2:(C2xDic6)192,1468
C22:2(C2xDic6) = D4xDic6φ: C2xDic6/Dic6C2 ⊆ Aut C2296C2^2:2(C2xDic6)192,1096
C22:3(C2xDic6) = C2xDic3.D4φ: C2xDic6/C2xDic3C2 ⊆ Aut C2296C2^2:3(C2xDic6)192,1040
C22:4(C2xDic6) = C2xC12.48D4φ: C2xDic6/C2xC12C2 ⊆ Aut C2296C2^2:4(C2xDic6)192,1343

Non-split extensions G=N.Q with N=C22 and Q=C2xDic6
extensionφ:Q→Aut NdρLabelID
C22.1(C2xDic6) = D4:5Dic6φ: C2xDic6/Dic6C2 ⊆ Aut C2296C2^2.1(C2xDic6)192,1098
C22.2(C2xDic6) = D4:6Dic6φ: C2xDic6/Dic6C2 ⊆ Aut C2296C2^2.2(C2xDic6)192,1102
C22.3(C2xDic6) = C2xC12.53D4φ: C2xDic6/C2xDic3C2 ⊆ Aut C2296C2^2.3(C2xDic6)192,682
C22.4(C2xDic6) = C23.8Dic6φ: C2xDic6/C2xDic3C2 ⊆ Aut C22484C2^2.4(C2xDic6)192,683
C22.5(C2xDic6) = C23:3Dic6φ: C2xDic6/C2xDic3C2 ⊆ Aut C2248C2^2.5(C2xDic6)192,1042
C22.6(C2xDic6) = C42.88D6φ: C2xDic6/C2xDic3C2 ⊆ Aut C2296C2^2.6(C2xDic6)192,1076
C22.7(C2xDic6) = C42.90D6φ: C2xDic6/C2xDic3C2 ⊆ Aut C2296C2^2.7(C2xDic6)192,1078
C22.8(C2xDic6) = C2xC24.C4φ: C2xDic6/C2xC12C2 ⊆ Aut C2296C2^2.8(C2xDic6)192,666
C22.9(C2xDic6) = C23.9Dic6φ: C2xDic6/C2xC12C2 ⊆ Aut C22484C2^2.9(C2xDic6)192,684
C22.10(C2xDic6) = C42.274D6φ: C2xDic6/C2xC12C2 ⊆ Aut C2296C2^2.10(C2xDic6)192,1029
C22.11(C2xDic6) = C6.72+ 1+4φ: C2xDic6/C2xC12C2 ⊆ Aut C2296C2^2.11(C2xDic6)192,1059
C22.12(C2xDic6) = (C2xC12):Q8central extension (φ=1)192C2^2.12(C2xDic6)192,205
C22.13(C2xDic6) = C6.(C4xQ8)central extension (φ=1)192C2^2.13(C2xDic6)192,206
C22.14(C2xDic6) = C2.(C4xDic6)central extension (φ=1)192C2^2.14(C2xDic6)192,213
C22.15(C2xDic6) = Dic3:C4:C4central extension (φ=1)192C2^2.15(C2xDic6)192,214
C22.16(C2xDic6) = C12:4(C4:C4)central extension (φ=1)192C2^2.16(C2xDic6)192,487
C22.17(C2xDic6) = (C2xDic6):7C4central extension (φ=1)192C2^2.17(C2xDic6)192,488
C22.18(C2xDic6) = C4xDic3:C4central extension (φ=1)192C2^2.18(C2xDic6)192,490
C22.19(C2xDic6) = (C2xC42).6S3central extension (φ=1)192C2^2.19(C2xDic6)192,492
C22.20(C2xDic6) = C4xC4:Dic3central extension (φ=1)192C2^2.20(C2xDic6)192,493
C22.21(C2xDic6) = C42:10Dic3central extension (φ=1)192C2^2.21(C2xDic6)192,494
C22.22(C2xDic6) = C42:11Dic3central extension (φ=1)192C2^2.22(C2xDic6)192,495
C22.23(C2xDic6) = C24.55D6central extension (φ=1)96C2^2.23(C2xDic6)192,501
C22.24(C2xDic6) = C24.57D6central extension (φ=1)96C2^2.24(C2xDic6)192,505
C22.25(C2xDic6) = C24.58D6central extension (φ=1)96C2^2.25(C2xDic6)192,509
C22.26(C2xDic6) = C12:(C4:C4)central extension (φ=1)192C2^2.26(C2xDic6)192,531
C22.27(C2xDic6) = (C4xDic3):8C4central extension (φ=1)192C2^2.27(C2xDic6)192,534
C22.28(C2xDic6) = (C4xDic3):9C4central extension (φ=1)192C2^2.28(C2xDic6)192,536
C22.29(C2xDic6) = C4:C4:6Dic3central extension (φ=1)192C2^2.29(C2xDic6)192,543
C22.30(C2xDic6) = C2xC6.C42central extension (φ=1)192C2^2.30(C2xDic6)192,767
C22.31(C2xDic6) = C24.73D6central extension (φ=1)96C2^2.31(C2xDic6)192,769
C22.32(C2xDic6) = C24.75D6central extension (φ=1)96C2^2.32(C2xDic6)192,771
C22.33(C2xDic6) = C2xC4xDic6central extension (φ=1)192C2^2.33(C2xDic6)192,1026
C22.34(C2xDic6) = C2xC12:2Q8central extension (φ=1)192C2^2.34(C2xDic6)192,1027
C22.35(C2xDic6) = C2xC12.6Q8central extension (φ=1)192C2^2.35(C2xDic6)192,1028
C22.36(C2xDic6) = C2xC12:Q8central extension (φ=1)192C2^2.36(C2xDic6)192,1056
C22.37(C2xDic6) = C2xC4.Dic6central extension (φ=1)192C2^2.37(C2xDic6)192,1058
C22.38(C2xDic6) = C22xDic3:C4central extension (φ=1)192C2^2.38(C2xDic6)192,1342
C22.39(C2xDic6) = C22xC4:Dic3central extension (φ=1)192C2^2.39(C2xDic6)192,1344
C22.40(C2xDic6) = (C2xC4):Dic6central stem extension (φ=1)192C2^2.40(C2xDic6)192,215
C22.41(C2xDic6) = C6.(C4:Q8)central stem extension (φ=1)192C2^2.41(C2xDic6)192,216
C22.42(C2xDic6) = (C2xC4).Dic6central stem extension (φ=1)192C2^2.42(C2xDic6)192,219
C22.43(C2xDic6) = (C22xC4).85D6central stem extension (φ=1)192C2^2.43(C2xDic6)192,220
C22.44(C2xDic6) = C23:2Dic6central stem extension (φ=1)96C2^2.44(C2xDic6)192,506
C22.45(C2xDic6) = C24.17D6central stem extension (φ=1)96C2^2.45(C2xDic6)192,507
C22.46(C2xDic6) = C24.18D6central stem extension (φ=1)96C2^2.46(C2xDic6)192,508
C22.47(C2xDic6) = (C2xDic3):Q8central stem extension (φ=1)192C2^2.47(C2xDic6)192,538
C22.48(C2xDic6) = (C2xC12).54D4central stem extension (φ=1)192C2^2.48(C2xDic6)192,541
C22.49(C2xDic6) = (C2xC12).55D4central stem extension (φ=1)192C2^2.49(C2xDic6)192,545

׿
x
:
Z
F
o
wr
Q
<